

User's manual FLIR G300 a

User's manual FLIR G300 a

Table of contents

1	Legal	disclaimer	1
	1.1	Legal disclaimer	1
	1.2	Usage statistics	1
	1.3	Changes to registry	1
	1.4	U.S. Government Regulations	1
	1.5	Copyright	1
	1.6	Quality assurance	1
	1.7	Patents	1
	1.8	EULA Terms	1
2	Safet	y information	2
3	Notic	e to user	3
	3.1	User-to-user forums	3
	3.2	Accuracy	3
	3.3	Disposal of electronic waste	3
	3.4	Training	3
	3.5	Documentation updates	3
	3.6	Important note about this manual	3
	3.7	Note about authoritative versions	3
4	Custo	omer help	4
	4.1	General	4
	4.2	Submitting a guestion	4
	4.3	Downloads	5
5	Impo	rtant note about training and applications	6
U	5 1	General	6
6	Introc	luction	7
7	Typio	al system overview	
'	7 1	Explanation	و م
0	Outol		
0		Download ELIP Toolo	ə
	0.1		
9	Mech	anical installation	10
	9.1	Mounting interfaces	10
	9.2	Notes on permanent mounting	10
	9.3		10
	9.4	Further information	10
10	Conn	ectors	11
	10.1		11
4.4	10.2	Figure Explanation	11
11	10.2 Verify	Figure Explanation ing camera operation	11 1 2
11	10.2 Verify 11.1	Figure Explanation ring camera operation Power and analog video	11 . 12 12
	10.2 Verify 11.1 11.2	Figure Explanation Explanation Power and analog video IP Communication	11 12 12 12
11	10.2 Verify 11.1 11.2 Netwo	Figure Explanation ring camera operation Power and analog video IP Communication ork troubleshooting.	11 12 12 12 13
11 12 13	10.2 Verify 11.1 11.2 Netwo	Figure Explanation Explanation Power and analog video Power and analog Power and Power a	11 12 12 12 13 14
12 13	10.2 Verify 11.1 11.2 Netwo Techr 13.1	Figure Explanation Explanation Power and analog video Power and Analog Power and Pow	11 12 12 12 12 14 14
12 13	10.2 Verify 11.1 11.2 Netwo Techr 13.1 13.2	Figure Explanation Explanation Power and analog video Power and anal	11 12 12 12 13 14 14
12 13	10.2 Verify 11.1 11.2 Netwo Techr 13.1 13.2 13.3	Figure Explanation Explanation Power and analog video Power and Anal	11 12 12 12 13 14 14 14
12 13	10.2 Verify 11.1 11.2 Netwo Techr 13.1 13.2 13.3 13.4	Figure Explanation ving camera operation Power and analog video IP Communication ork troubleshooting nical data Online field-of-view calculator Note about technical data Note about authoritative versions FLIR G300 a 14.5° fixed lens	11 12 12 12 13 14 14 14 14
12 13	10.2 Verify 11.1 11.2 Netwo Techr 13.1 13.2 13.3 13.4 13.5	Figure Explanation ring camera operation Power and analog video IP Communication ork troubleshooting nical data Online field-of-view calculator Note about technical data Note about technical data Note about authoritative versions. FLIR G300 a 14.5° fixed lens FLIR G300 a 24° fixed lens	11 12 12 12 12 12 12 12 14 14 14 15 19

14	Mecha	anical drawings	23
15	CE De	eclaration of conformity	25
16	Detec	table gases	27
17	Why c	lo some gases absorb infrared energy?	30
18	Clean	ing the camera	33
	18.1	Camera housing, cables, and other items	33
		18.1.1 Liquids	33
		18.1.2 Equipment	33
		18.1.3 Procedure	33
	18.2	Infrared lens	33
		18.2.1 Liquids	33
		18.2.2 Equipment	33
		18.2.3 Procedure	33
19	About	t FLIR Systems	34
	19.1	More than just an infrared camera	35
	19.2	Sharing our knowledge	35
	19.3	Supporting our customers	36
20	Gloss	ary	37
			40
21	Thern	nographic measurement techniques	40
21	Thern 21.1	nographic measurement techniques Introduction	 40 40
21	Thern 21.1 21.2	nographic measurement techniques Introduction Emissivity	40 40 40
21	Thern 21.1 21.2	nographic measurement techniques Introduction Emissivity 21.2.1 Finding the emissivity of a sample	40 40 40 40
21	Thern 21.1 21.2 21.3	nographic measurement techniques Introduction Emissivity 21.2.1 Finding the emissivity of a sample Reflected apparent temperature	40 40 40 40 44
21	Thern 21.1 21.2 21.3 21.4	nographic measurement techniques Introduction Emissivity. 21.2.1 Finding the emissivity of a sample Reflected apparent temperature Distance	40 40 40 40 44 44
21	Thern 21.1 21.2 21.3 21.4 21.5	nographic measurement techniques Introduction Emissivity 21.2.1 Finding the emissivity of a sample Reflected apparent temperature Distance Relative humidity	40 40 40 40 44 44 44
21	Thern 21.1 21.2 21.3 21.4 21.5 21.6	nographic measurement techniques Introduction Emissivity. 21.2.1 Finding the emissivity of a sample Reflected apparent temperature Distance Relative humidity Other parameters	40 40 40 40 44 44 44 44
21 22	Thern 21.1 21.2 21.3 21.4 21.5 21.6 Histor	nographic measurement techniques Introduction Emissivity. 21.2.1 Finding the emissivity of a sample. Reflected apparent temperature. Distance Relative humidity Other parameters. ry of infrared technology.	40 40 40 44 44 44 44 44 45
21 22 23	Thern 21.1 21.2 21.3 21.4 21.5 21.6 Histor Theor	nographic measurement techniques Introduction Emissivity. 21.2.1 Finding the emissivity of a sample Reflected apparent temperature Distance Relative humidity Other parameters ry of infrared technology.	40 40 40 44 44 44 44 44 45 48
21 22 23	Thern 21.1 21.2 21.3 21.4 21.5 21.6 Histor Theor 23.1	Introduction Emissivity	40 40 40 44 44 44 44 44 44 45 48
21 22 23	Thern 21.1 21.2 21.3 21.4 21.5 21.6 Histor 23.1 23.2	Introduction Emissivity	40 40 40 44 44 44 44 44 45 48 48
21 22 23	Thern 21.1 21.2 21.3 21.4 21.5 21.6 Histor 23.1 23.2 23.3	Introduction Emissivity	40 40 40 40 44 44 44 44 44 45 48 48 48
21 22 23	Thern 21.1 21.2 21.3 21.4 21.5 21.6 Histor 23.1 23.2 23.3	Introduction Emissivity	40 40 40 40 44 44 44 44 45 48 48 48 48 49
21 22 23	Thern 21.1 21.2 21.3 21.4 21.5 21.6 Histor 23.1 23.2 23.3	Introduction Emissivity	40 40 40 40 44 44 44 44 45 48 48 48 48 48 48 49 50
21 22 23	Thern 21.1 21.2 21.3 21.4 21.5 21.6 Histor Theor 23.1 23.2 23.3	Introduction Emissivity	40 40 40 40 44 44 44 44 44 45 48 48 48 48 48 49 50 51
21 22 23	Thern 21.1 21.2 21.3 21.4 21.5 21.6 Histor Theor 23.1 23.2 23.3	Introduction Emissivity	40 40 40 40 44 44 44 44 44 45 48 48 48 48 48 50 51 51
21 22 23	Thern 21.1 21.2 21.3 21.4 21.5 21.6 Histor 23.1 23.2 23.3	Introduction Emissivity. 21.2.1 Finding the emissivity of a sample. Reflected apparent temperature. Distance . Relative humidity . Other parameters. ry of infrared technology. ry of thermography . Introduction The electromagnetic spectrum. Blackbody radiation. 23.3.1 Planck's law 23.3.2 Wien's displacement law. 23.3.4 Non-blackbody emitters. Infrared semi-transparent materials.	40 40 40 44 44 44 44 44 44 45 48 48 48 48 48 49 51 52 54

Legal disclaimer

1.1 Legal disclaimer

All products manufactured by FLIR Systems are warranted against defective materials and workmanship for a period of one (1) year from the delivery date of the original purchase, provided such products have been under normal storage, use and service, and in accordance with FLIR Systems instruction.

Uncooled handheld infrared cameras manufactured by FLIR Systems are warranted against defective materials and workmanship for a period of two (2) years from the delivery date of the original purchase, provided such products have been under normal storage, use and service, and in accordance with FLIR Systems instruction, and provided that the camera has been registered within 60 days of original purchase.

Detectors for uncooled handheld infrared cameras manufactured by FLIR Sys tems are warranted against defective materials and workmanship for a period of ten (10) years from the delivery date of the original purchase, provided such products have been under normal storage, use and service, and in accordance with FLIR Systems instruction, and provided that the camera has been regis-tered within 60 days of original purchase.

Products which are not manufactured by FLIR Systems but included in systems delivered by FLIR Systems to the original purchaser, carry the warranty, i any, of the particular supplier only. FLIR Systems has no responsibility whatso ever for such products.

The warranty extends only to the original purchaser and is not transferable. It is not applicable to any product which has been subjected to misuse, neglect, accident or abnormal conditions of operation. Expendable parts are excluded from the warranty.

In the case of a defect in a product covered by this warranty the product must not be further used in order to prevent additional damage. The purchaser shall promptly report any defect to FLIR Systems or this warranty will not apply.

FLIR Systems will, at its option, repair or replace any such defective product free of charge if, upon inspection, it proves to be defective in material or work-manship and provided that it is returned to FLIR Systems within the said oneyear period

FLIR Systems has no other obligation or liability for defects than those set forth abov

No other warranty is expressed or implied. FLIR Systems specifically disclaims the implied warranties of merchantability and fitness for a particular purpose.

FLIR Systems shall not be liable for any direct, indirect, special, incidental or consequential loss or damage, whether based on contract, tort or any other legal theory

This warranty shall be governed by Swedish law

Any dispute, controversy or claim arising out of or in connection with this warranty, shall be finally settled by arbitration in accordance with the Rules of the Arbitration Institute of the Stockholm Chamber of Commerce. The place of ar bitration shall be Stockholm. The language to be used in the arbitral proceedings shall be English.

1.2 Usage statistics

FLIR Systems reserves the right to gather anonymous usage statistics to help maintain and improve the quality of our software and services

1.3 Changes to registry

The registry entry HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet ControlLead.InCompatibilityLevel will be automatically changed to level 2 if the FLIR Camera Monitor service detects a FLIR camera connected to the computer with a USB cable. The modification will only be executed if the camera device implements a remote network service that supports network logons.

1.4 U.S. Government Regulations

This product may be subject to U.S. Export Regulations. Please send any inquiries to exportquestions@flir.com

1.5 Copyright

© 2016, FLIR Systems, Inc. All rights reserved worldwide. No parts of the software including source code may be reproduced, transmitted, transcribed or translated into any language or computer language in any form or by any means, electronic, magnetic, optical, manual or otherwise, without the prior written permission of FLIR Systems.

The documentation must not, in whole or part, be copied, photocopied, repro-duced, translated or transmitted to any electronic medium or machine read-able form without prior consent, in writing, from FLIR Systems.

Names and marks appearing on the products herein are either registered trademarks or trademarks of FLIR Systems and/or its subsidiaries. All other trademarks, trade names or company names referenced herein are used for identification only and are the property of their respective owners.

1.6 Quality assurance

The Quality Management System under which these products are developed and manufactured has been certified in accordance with the ISO 9001 standard

FLIR Systems is committed to a policy of continuous development; therefore we reserve the right to make changes and improvements on any of the products without prior notice.

1.7 Patents

One or several of the following patents and/or design patents may apply to the products and/or features. Additional pending patents and/or pending design patents may also apply.

000279476-0001; 000439161; 000499579-0001; 000653423; 000726344; 000859020; 001106306-0001; 001707738; 001707746; 001707787; 001776519: 001954074: 002021543: 002058180: 002249953: 002531178: 0017/5015; 001934074; 002021343; 00205010; 002249935; 002051 0600574-8; 1144833; 1182246; 1182620; 1285345; 1299699; 1325808; 1336775; 131114; 1402918; 1404291; 1411581; 1415075; 1421497; 1458284; 1678485; 1732314; 2106017; 2107799; 2381417; 3006596; 3006597: 466540: 483782: 484155: 4889913: 5177595: 60122153.2 300597, 40540, 43782, 464 155, 469913, 517795, 6012215.2, 602004011681.5-08; 6707044; 68657; 7034300; 7110035; 7154093; 7157705; 7237946; 7312822; 7332716; 7336823; 7544944; 7667198; 7809258 B2; 7826736; 8,153,971; 8,823,803; 8,853,631; 8018649 B2; 8212210 B2; R289372; 8354639 B2; 8394783; 8520970; 8665547; 8595689; 8599262; 6654239; 866468; 8803093; D540838; D549758; D579475; D584755; D599,392; D615,113; D664,580; D664,581; D665,004; D665,440; D677298: D710 424 S: D718801: DI6702302-9: DI6903617-9: DI7002221-6: Dor/296, Dr 10; 45; Dr 1860; Di6/05302; 9; Di903617; 9; Dh/0222 Di7002891-5; Di7002892; 3) Dr 005799-0; DM/057692; DM/061609; EP 2115696 B1; EP2315433; SE 0700240-5; US 8340414 B2; ZL 201330267619.5; ZL01823221.3; ZL01823226 4; ZL02331553.9; 2L200301564.7; ZL200480034894.0; ZL200530120994.2; ZL200610088759.5; ZL200630130114.4; ZL200730151141.4; ZL200730339504.7; ZL200620105768.8; ZL200830125511.2; ZL200880105236.4; ZL200880105769.2; ZL200930190061.9; ZL201030176127.1; ZL201030176130.3; ZL201030176157.2; ZL201030595931.3

1.8 EULA Terms

You have acquired a device ("INFRARED CAMERA") that includes soft-ware licensed by FLIR Systems AB from Microsoft Licensing, GP or its af-filiates ("MS"). Those installed software products of MS origin, as well as associated media, printed materials, and "online" or electronic documenlassociated methods and that the source of t al property

ZL201130442354.9; ZL201230471744.3; ZL201230620731.8

IF YOU DO NOT AGREE TO THIS END USER LICENSE AGREEMENT ("EULA"), DO NOT USE THE DEVICE OR COPY THE SOFTWARE. IN-STEAD, PROMPTLY CONTACT FLIR Systems AB FOR INSTRUCTIONS ON RETURN OF THE UNUSED DEVICE(S) FOR A REFUND. ANY USE OF THE SOFTWARE, INCLUDING BUT NOT LIMITED TO USE ON THE DEVICE, WILL CONSTITUTE YOUR AGREEMENT TO THIS EU-LA (OR RATIFICATION OF ANY PREVIOUS CONSENT). GRANT OF SOFTWARE LICENSE. This EULA grants you the following

- You may use the SOFTWARE only on the DEVICE. NOT FAULT TOLERANT. THE SOFTWARE IS NOT FAULT TOLER-ANT. FLIR Systems AB HAS INDEPENDENTLY DETERMINED HOW TO USE THE SOFTWARE IN THE DEVICE, AND MS HAS RELIED UPON FLIR Systems AB TO CONDUCT SUFFICIENT TESTING TO DETERMINE THAT THE SOFTWARE IS SUITABLE EOR CLICH UPE FOR SUCH USE.
- NO WARRANTIES FOR THE SOFTWARE. THE SOFTWARE is provided "AS IS" and with all faults. THE ENTIRE RISK AS TO SAT-ISFACTORY QUALITY, PERFORMANCE, ACCURACY, AND EF-FORT (INCLUDING LACK OF NEGLIGENCE) IS WITH YOU. ALSO, THERE IS NO WARRANTY AGAINST INTERFERENCE WITH YOUR ENJOYMENT OF THE SOFTWARE OR AGAINST IN-FRINCEMENT. IF YOU HAVE RECEIVED ANY WARRANTIES RE-GARDING THE DEVICE OR THE SOFTWARE, THOSE WARRANTIES DO NOT ORIGINATE FROM, AND ARE NOT BINDING ON, MS.
- No Liability for Certain Damages. EXCEPT AS PROHIBITED BY LAW, MS SHALL HAVE NO LIABILITY FOR ANY INDIRECT, SPE-CIAL, CONSEQUENTIAL OR INCIDENTIAL DAMAGES ARISING FROM OR IN CONNECTION WITH THE USE OR PERFORM-ANCE OF THE SOFTWARE. THIS LIMITATION SHALL APPLY EVEN IF ANY REMEDY FAILS OF ITS ESSENTIAL PURPOSE. IN NO EVENT SHALL MS BE LIABLE FOR ANY AMOUNT IN EX-CESS OF U.S. TWO HUNDRED FIFTY DOLLARS (U.S.\$250.00).
- Limitations on Reverse Engineering, Decompilation, and Dis-assembly. You may not reverse engineer, decompile, or disassem-ble the SOFTWARE, except and only to the extent that such activity is expressly permitted by applicable law notwithstanding this limitation
- SOFTWARE TRANSFER ALLOWED BUT WITH RESTRICTIONS. You may permanently transfer rights under this EULA only as part of a permanent sale or transfer of the Device, and only if the recipient agrees to this EULA. If the SOFTWARE is an upgrade, any transfer must also include all prior versions of the SOFTWARE. EXPORT RESTRICTIONS. You acknowledge that SOFTWARE is
- subject to U.S. export jurisdiction. You agree to comply with all appli-cable international and national laws that apply to the SOFTWARE, including the U.S. Export Administration Regulations, as well as end-user, end-use and destination restrictions issued by U.S. and other governments. For additional information see http://www.micro soft.com/exporting/

Safety information

VI WARNING

Make sure that you read all applicable MSDS (Material Safety Data Sheets) and warning labels on containers before you use a liquid. The liquids can be dangerous. Injury to persons can occur.

VI WARNING

For equipment with plugs:

Make sure that you install the socket-outlet near the equipment and that it is easy to get access to.

Do not point the infrared camera (with or without the lens cover) at strong energy sources, for example, devices that cause laser radiation, or the sun. This can have an unwanted effect on the accuracy of the camera. It can also cause damage to the detector in the camera.

Do not use the camera in temperatures more than +50°C (+122°F), unless other information is specified in the user documentation or technical data. High temperatures can cause damage to the camera.

Do not apply solvents or equivalent liquids to the camera, the cables, or other items. Damage to the battery and injury to persons can occur.

Be careful when you clean the infrared lens. The lens has an anti-reflective coating which is easily damaged. Damage to the infrared lens can occur.

Do not use too much force to clean the infrared lens. This can cause damage to the anti-reflective coating.

Applicability: Cameras with an automatic shutter that can be disabled.

Do not disable the automatic shutter in the camera for a long time period (a maximum of 30 minutes is typical). If you disable the shutter for a longer time period, damage to the detector can occur.

🗐 ΝΟΤΕ

The encapsulation rating is only applicable when all the openings on the camera are sealed with their correct covers, hatches, or caps. This includes the compartments for data storage, batteries, and connectors.

Notice to user

3.1 User-to-user forums

Exchange ideas, problems, and infrared solutions with fellow thermographers around the world in our user-to-user forums. To go to the forums, visit:

http://www.infraredtraining.com/community/boards/

3.2 Accuracy

For very accurate results, we recommend that you wait 5 minutes after you have started the camera before measuring a temperature.

For cameras where the detector is cooled by a mechanical cooler, this time period excludes the time it takes to cool down the detector.

3.3 Disposal of electronic waste

As with most electronic products, this equipment must be disposed of in an environmentally friendly way, and in accordance with existing regulations for electronic waste.

Please contact your FLIR Systems representative for more details.

3.4 Training

To read about infrared training, visit:

- http://www.infraredtraining.com
- http://www.irtraining.com
- http://www.irtraining.eu

3.5 Documentation updates

Our manuals are updated several times per year, and we also issue product-critical notifications of changes on a regular basis.

To access the latest manuals and notifications, go to the Download tab at:

http://support.flir.com

It only takes a few minutes to register online. In the download area you will also find the latest releases of manuals for our other products, as well as manuals for our historical and obsolete products.

3.6 Important note about this manual

FLIR Systems issues generic manuals that cover several cameras within a model line.

This means that this manual may contain descriptions and explanations that do not apply to your particular camera model.

3.7 Note about authoritative versions

The authoritative version of this publication is English. In the event of divergences due to translation errors, the English text has precedence.

Any late changes are first implemented in English.

Customer help

FLIR Customer Support Center

4.1 General

For customer help, visit:

http://support.flir.com

4.2 Submitting a question

To submit a question to the customer help team, you must be a registered user. It only takes a few minutes to register online. If you only want to search the knowledgebase for existing questions and answers, you do not need to be a registered user.

When you want to submit a question, make sure that you have the following information to hand:

- The camera model
- The camera serial number
- The communication protocol, or method, between the camera and your device (for example, HDMI, Ethernet, USB, or FireWire)

- Device type (PC/Mac/iPhone/iPad/Android device, etc.)
- Version of any programs from FLIR Systems
- Full name, publication number, and revision number of the manual

4.3 Downloads

On the customer help site you can also download the following, when applicable for the product:

- Firmware updates for your infrared camera.
- Program updates for your PC/Mac software.
- Freeware and evaluation versions of PC/Mac software.
- User documentation for current, obsolete, and historical products.
- Mechanical drawings (in *.dxf and *.pdf format).
- Cad data models (in *.stp format).
- Application stories.
- Technical datasheets.
- Product catalogs.

Important note about training and applications

5.1 General

Infrared inspection of gas leaks, furnaces, and high-temperature applications—including infrared image and other data acquisition, analysis, diagnosis, prognosis, and reporting— is a highly advanced skill. It requires professional knowledge of thermography and its applications, and is, in some countries, subject to certification and legislation.

Consequently, we strongly recommend that you seek the necessary training before carrying out inspections. Please visit the following site for more information:

http://www.infraredtraining.com

Introduction

The new FLIR G300 a is an optical gas camera unit that can be integrated in housings with application specific requirements. The FLIR G300 a visualizes greenhouse gas emissions or volatile organic compounds (VOCs). When integrated in a fixed housing, the system is perfect for monitoring a pinpointed area over a long period of time, making automatic around-the-clock monitoring possible.

Key features:

- Can be integrated in application-specific housings.
- Visualizes gas leaks in real time.
- Remote control.
- Inspects without interruption.
- Traces leaks to their source.

The FLIR G300 a detects the following gases:

- 1-pentene
- benzene
- butane
- ethane
- ethanol
- ethylbenzene
- ethylene
- heptane
- hexane
- isoprene
- *m*-xylene
- methane
- methanol
- methyl ethyl ketone (MEK)
- methyl isobutyl ketone (MIBK)
- octane
- pentane
- propane
- propylene.
- toluene

Typical system overview

7.1 Explanation

7

1. Pigtail cable from the housing:

- Brown: positive (+).
- Blue: negative (-).
- Green/yellow: earth.
- 2. 10-28 V DC power supply.
- 3. USB cable.
- 4. USB hub.
- 5. Ethernet cable with an RJ45 connector.
- 6. Ethernet switch.
- 7. Cable with an HDMI or DVI connector.
- 8. Video cable with a BNC connector.

Follow this procedure:

- 1. Connect the power, video, and Ethernet cables to the camera.
- Connect the video cable from the camera to a display/monitor, and connect the power cable to a power supply (10–28 V DC). Verify that video output is displayed on the monitor.
- 3. Connect the camera to the network using the Ethernet cable.
- 4. Use FLIR Tools to set up and control the camera. For more information, see section 8.1 *Download FLIR Tools*, page 9.

8.1 Download FLIR Tools

FLIR Tools lets you quickly create professional inspection reports that clearly show decision makers what you've found with your IR camera.

Import, analyze, and fine-tune images easily. Then incorporate them into concise documents to share findings and justify repairs.

Go to the following website to download FLIR Tools:

http://support.flir.com/tools

Mechanical installation

9.1 Mounting interfaces

The housing has a mounting interface in the bottom with the following threaded holes.

- 8 × M4 metric threaded holes
- 1 × UNC ¼"-20 standard tripod mount.

There are also holes for positioning, see section 14 *Mechanical drawings* for more information.

9.2 Notes on permanent mounting

If the camera unit is to be permanently mounted at the application site, certain steps are required.

The camera unit needs to be enclosed in a protective housing and, depending on the ambient conditions (e.g., temperature), the housing may need to be cooled or heated by means of water or air. The distance between the camera unit and the back panel needs to be large enough to achieve sufficient cooling.

In very dusty conditions the installation might also require a stream of pressurized air directed at the lens, to prevent dust build-up.

9.3 Vibrations

When mounting the camera unit in harsh industrial environments, every precaution should be taken when securing the unit.

If the environment exposes the unit to severe vibrations, there may be a need to secure the mounting screws by means of Loctite or another industrial brand of thread-locking liquid, as well as to dampen the vibrations by mounting the camera unit on a specially designed base.

9.4 Further information

For further information on mounting recommendations and environmental enclosures, contact FLIR Systems.

Connectors

10.1 Figure

10.2 Explanation

- 1. Video cable with a BNC connector (for CVBS, composite video output).
- 2. HDMI cable with a type D connector (for digital video output).
- 3. USB-A cable (to connect an external USB device to the camera).
- 4. Ethernet cable with an RJ45 connector (to connect to the network).

Note Only CAT-6 Ethernet cables should be used with this camera.

- 5. Not used.
- 6. Power cable for 10–28 V DC power in.

Note The power connector on the camera is polarity protected.

Verifying camera operation

Prior to installing the camera, use a bench test to verify camera operation and to configure the camera for the local network. The camera provides analog video, and can be controlled through IP communications.

11.1 Power and analog video

Follow this procedure:

- 1. Connect the power, video, Ethernet, and USB.
- 2. Connect the video cable from the camera to a display/monitor, and connect the power cable to a power supply.

11.2 IP Communication

It is assumed that a FLIR G300 a system will be set up on an existing network and assigned an IP address from the DHCP server. The MAC address can be found on a label on the bottom side of the camera.

To detect the camera system on the network, use either FLIR IR Camera Player or FLIR IP Config. You can download these programs from the following links.

Software	Download of software	
FLIR Camera Player	http://tinyurl.com/ncs5qhd	
FLIR IP Config	http://tinyurl.com/o5wudd7	

The manuals for these programs are included on the User Documentation CD-ROM that ships with the camera system.

Network troubleshooting

Try one of the following if you experience network problems:

- Reset the modem and unplug and replug the Ethernet cable at both ends.
- Reboot the computer with the cables connected.
- Swap your Ethernet cable with another cable that is either brand new or known to be in working condition.
- Connect your Ethernet cable to a different wall socket. If you are still not able to get online, you are probably experiencing a configuration issue.
- Verify your IP address.
- Disable Network Bridging.
- Disable your Wi-Fi connectivity (if you use it) to ensure that the wired Ethernet port is open.
- Renew the DHCP license.
- Make sure that the firewall is turned off when you troubleshoot.
- Make sure that your wireless adapter is switched off. If not, the search for the camera might only look for a wireless connection.
- Normally a modern computer will handle both crossed and uncrossed cable types automatically, but for troubleshooting purposes try both or use a switch.
- Turn off any network adapters that are not connected to the camera.
- For troubleshooting purposes, power both the camera and the computer using a mains adapter. Some laptops turn off the network card to save power when using the battery.

If none of these steps help you, contact your ISP.

Technical data

13.1 Online field-of-view calculator

Please visit <u>http://support.flir.com</u> and click the photo of the camera series for field-of-view tables for all lens–camera combinations.

13.2 Note about technical data

FLIR Systems reserves the right to change specifications at any time without prior notice. Please check <u>http://support.flir.com</u> for latest changes.

13.3 Note about authoritative versions

The authoritative version of this publication is English. In the event of divergences due to translation errors, the English text has precedence.

Any late changes are first implemented in English.

13.4 FLIR G300 a 14.5° fixed lens

P/N: 71502-0101 Rev.: 35207

General description

The FLIR G300 a is a bare infrared camera unit for optical gas imaging (OGI) that visualizes and pinpoints leaks of volatile organic compounds (VOCs), without the need to shut down the operation. The FLIR G300 a is used in industrial settings such as oil refineries, natural gas processing plants, offshore platforms, chemical/petrochemical industries, and biogas and power generation plants.

The camera unit is delivered as a bare unit, and is intended for integration in OEM systems.

Benefits

- Improved efficiency: The FLIR G300 a reduces revenue loss by pinpointing even small gas leaks quickly and efficiently, and from a distance. It also reduces the inspection time by allowing a broad area to be scanned rapidly and without the need to interrupt the industrial process.
- Increased worker safety: OGI allows gas leaks to be detected in a non-contact mode and from a safe distance. This reduces the risk of the user being exposed to invisible and potentially harmful or explosive chemicals. With a FLIR G300 a gas imaging camera unit it is easy to scan areas of interest that are difficult to reach with conventional methods.
- Protecting the environment: Several VOCs are dangerous to human health or cause harm to the environment, and are usually governed by regulations. Even small leaks can be detected and documented using the FLIR G300 a.

Detects the following gases: benzene, ethanol, ethylbenzene, heptane, hexane, isoprene, methanol, methyl ethyl ketone, MIBK, octane, pentane, 1-pentene, toluene, *m*-xylene, ethane, butane, methane, propane, ethylene, propylene.

Imaging and optical data			
IR resolution	320×240 pixels		
Thermal sensitivity/NETD	<15 mK @ +30°C (+86°F)		
Field of view (FOV)	14.5° × 10.8°		
Minimum focus distance	0.5 m (1.64 ft.)		
Focal length	38 mm (1.49 in.)		
F-number	1.5		
Focus	Automatic using FLIR SDK, or manual		
Zoom	1-8× continuous, digital zoom		
Digital image enhancement	Noise reduction filter, high sensitivity mode (HSM)		
Detector data	Detector data		
Detector type	Focal plane array (FPA), cooled InSb		
Spectral range	3.2–3.4 μm		
Sensor cooling	Stirling Microcooler (FLIR MC-3)		
MTBF	2 years or 15,000 hours (whichever is greatest), for a camera running 24/7 @ +20°C (+68°F)		
Detects following gases	Benzene, ethanol, ethylbenzene, heptane, hexane, isoprene, methanol, methyl ethyl ketone, MIBK, oc- tane, pentane, 1-pentene, toluene, m-xylene, ethane, butane, methane, propane, ethylene, propylene		
Electronics and data rate			
Full frame rate	60 Hz		

Image presentation				
Automatic image adjustment	Continuous/manual; linear or histogram based			
Manual image adjustment	Level/span			
Image presentation modes				
Image modes	IR image, high sensitivity mode (HSM)			
Temperature ranges				
Temperature range	-20°C to +350°C (-4°F to +662°F)			
Video streaming				
Non-radiometric IR video streaming	RTP/MPEG4			
Data communication interfaces				
Interfaces	HDMI Ethernet			
USB				
USB	Control and image			
USB, standard	2.0 High Speed			
USB, connector type	USB micro			
USB, communication	TCP/IP socket-based, Microsoft RNDIS or/and USB video class			
USB, video streaming	640×480 pixels at 30 Hz (using USB video class)			
USB, image streaming	16-bit 320 × 240 at 30 Hz (using USB video class)			
USB, protocols	TCP, UDP, RTSP, RTP, HTTP, ICMP, IGMP, ftp, DHCP			
Ethernet				
Ethernet	Control, result and image			
Ethernet, type	100 Mbps			
Ethernet, standard	IEEE 802.3			
Ethernet, connector type	RJ-45			
Ethernet, communication	TCP/IP socket-based FLIR proprietary			
Ethernet, video streaming	640×480 pixels at up to 15 Hz			
	MPEG-4, ISO/IEC 14496-1 MPEG-4 ASP@L5			
Ethernet, image streaming	16-bit 320 × 240 pixels at up to 10 Hz			
Ethernet, protocols	TCP, UDP, RTSP, RTP, HTTP, ICMP, IGMP, ftp, DHCP, MDNS (Bonjour), SMB/CIFS			
Composite video				
Video out	Digital video output (image)			
Power system				
DC operation	10-28 V DC, polarity protected			
Power	 Max. power cooling down @12 V: 13 W Steady state @12 V: 9 W 			
Start-up time	Typically 7 min. @ 25°C (+77°F)			

Environmental data			
Operating temperature range	-20°C to +50°C (-4°F to +122°F)		
Storage temperature range	-30°C to +60°C (-22°F to +140°F)		
Humidity (operating and storage)	IEC 68-2-30/24 h 95% relative humidity +25°C to +40°C (+77°F to +104°F) (2 cycles)		
Directives	 Low voltage directive: 2006/95/EC EMC: 2004/108/EC RoHS: 2002/95/EC WEEE: 2002/96/EC 		
EMC	 EN61000-6-4 (Emission) EN61000-6-2 (Immunity) FCC 47 CFR Part 15 class A (Emission) EN 61 000-4-8, L5 		
Shock	25 g (IEC 60068-2-27)		
Vibration	2 g (IEC 60068-2-6)		
Physical data			
Weight	1.4 kg (3.1 lb.), incl. 14.5° lens		
Cameras size, incl. lens (L \times W \times H)	$242\times80\times105$ mm (9.5 \times 3.1 \times 4.1 in.), incl. 14.5° lens		
Housing material	Aluminum		
Shipping information			
Packaging, type	Cardboard box		
List of contents	 Infrared camera Ethernet cable FLIR ThermoVision SDK (license only) FLIR VideoReport CD-ROM Lens cap Power supply Printed documentation USB cable Video cable 		
Packaging, weight			
Packaging, size			
EAN-13	7332558008409		
UPC-12	845188008758		
Country of origin	Sweden		

Supplies & accessories:

- T197387; IR lens, 24° with case for GF300, GF309, GF320
- T197388; IR lens, 6° with case for GF300, GF309, GF320, GF346.
- T197385; IR lens, 14.5° with case for GF300, GF309, GF320
- T197692; Battery charger, incl. power supply with multi plugs
- T910814; Power supply, incl. multi plugs
- T198511; Li-Ion Battery pack 7.4V 33Wh
- T911230ACC; Memory card SDHC 4 GB
- 1910423; USB cable Std A <-> Mini-B
- T198509; Cigarette lighter adapter kit, 12 VDC, 1.2 m/3.9 ft.
- T910815ACC; HDMI to HDMI cable 1.5 m
- T910816ACC; HDMI to DVI cable 1.5 m

- T197555; Hard transport case for FLIR GF3xx-Series
- T198585; FLIR VideoReport
- DSW-10000; FLIR IR Camera Player
- T199233; FLIR Atlas SDK for .NET
- T199234; FLIR Atlas SDK for MATLAB
- T198567; ThermoVision™ System Developers Kit Ver. 2.6
- T198566; ThermoVision™ LabVIEW® Digital Toolkit Ver. 3.3

13.5 FLIR G300 a 24° fixed lens

P/N: 71502-0102 Rev.: 35207

General description

The FLIR G300 a is a bare infrared camera unit for optical gas imaging (OGI) that visualizes and pinpoints leaks of volatile organic compounds (VOCs), without the need to shut down the operation. The FLIR G300 a is used in industrial settings such as oil refineries, natural gas processing plants, offshore platforms, chemical/petrochemical industries, and biogas and power generation plants.

The camera unit is delivered as a bare unit, and is intended for integration in OEM systems.

Benefits

- Improved efficiency: The FLIR G300 a reduces revenue loss by pinpointing even small gas leaks quickly and efficiently, and from a distance. It also reduces the inspection time by allowing a broad area to be scanned rapidly and without the need to interrupt the industrial process.
- Increased worker safety: OGI allows gas leaks to be detected in a non-contact mode and from a safe distance. This reduces the risk of the user being exposed to invisible and potentially harmful or explosive chemicals. With a FLIR G300 a gas imaging camera unit it is easy to scan areas of interest that are difficult to reach with conventional methods.
- Protecting the environment: Several VOCs are dangerous to human health or cause harm to the environment, and are usually governed by regulations. Even small leaks can be detected and documented using the FLIR G300 a.

Detects the following gases: benzene, ethanol, ethylbenzene, heptane, hexane, isoprene, methanol, methyl ethyl ketone, MIBK, octane, pentane, 1-pentene, toluene, *m*-xylene, ethane, butane, methane, propane, ethylene, propylene.

Imaging and optical data			
IR resolution	320×240 pixels		
Thermal sensitivity/NETD	<15 mK @ +30°C (+86°F)		
Field of view (FOV)	24° × 18°		
Minimum focus distance	0.3 m (1.0 ft.)		
Focal length	23 mm (0.89 in.)		
F-number	1.5		
Focus	Automatic using FLIR SDK, or manual		
Zoom	1-8× continuous, digital zoom		
Digital image enhancement	Noise reduction filter, high sensitivity mode (HSM)		
Detector data	Detector data		
Detector type	Focal plane array (FPA), cooled InSb		
Spectral range	3.2–3.4 μm		
Sensor cooling	Stirling Microcooler (FLIR MC-3)		
MTBF	2 years or 15,000 hours (whichever is greatest), for a camera running 24/7 @ +20°C (+68°F)		
Detects following gases	Benzene, ethanol, ethylbenzene, heptane, hexane, isoprene, methanol, methyl ethyl ketone, MIBK, oc- tane, pentane, 1-pentene, toluene, m-xylene, ethane, butane, methane, propane, ethylene, propylene		
Electronics and data rate			
Full frame rate	60 Hz		

Image presentation				
Automatic image adjustment	Continuous/manual; linear or histogram based			
Manual image adjustment	Level/span			
Image presentation modes				
Image modes	IR image, high sensitivity mode (HSM)			
Temperature ranges				
Temperature range	-20°C to +350°C (-4°F to +662°F)			
Video streaming				
Non-radiometric IR video streaming	RTP/MPEG4			
Data communication interfaces				
Interfaces	HDMI Ethernet			
USB				
USB	Control and image			
USB, standard	2.0 High Speed			
USB, connector type	USB micro			
USB, communication	TCP/IP socket-based, Microsoft RNDIS or/and USB video class			
USB, video streaming	640×480 pixels at 30 Hz (using USB video class)			
USB, image streaming	16-bit 320 × 240 at 30 Hz (using USB video class)			
USB, protocols	TCP, UDP, RTSP, RTP, HTTP, ICMP, IGMP, ftp, DHCP			
Ethernet				
Ethernet	Control, result and image			
Ethernet, type	100 Mbps			
Ethernet, standard	IEEE 802.3			
Ethernet, connector type	RJ-45			
Ethernet, communication	TCP/IP socket-based FLIR proprietary			
Ethernet, video streaming	640×480 pixels at up to 15 Hz			
	MPEG-4, ISO/IEC 14496-1 MPEG-4 ASP@L5			
Ethernet, image streaming	16-bit 320 × 240 pixels at up to 10 Hz			
Ethernet, protocols	TCP, UDP, RTSP, RTP, HTTP, ICMP, IGMP, ftp, DHCP, MDNS (Bonjour), SMB/CIFS			
Composite video				
Video out	Digital video output (image)			
Power system				
DC operation	10-28 V DC, polarity protected			
Power	 Max. power cooling down @12 V: 13 W Steady state @12 V: 9 W 			
Start-up time	Typically 7 min. @ 25°C (+77°F)			

Environmental data		
Operating temperature range	-20°C to +50°C (-4°F to +122°F)	
Storage temperature range	-30°C to +60°C (-22°F to +140°F)	
Humidity (operating and storage)	IEC 68-2-30/24 h 95% relative humidity +25°C to +40°C (+77°F to +104°F) (2 cycles)	
Directives	 Low voltage directive: 2006/95/EC EMC: 2004/108/EC RoHS: 2002/95/EC WEEE: 2002/96/EC 	
EMC	 EN61000-6-4 (Emission) EN61000-6-2 (Immunity) FCC 47 CFR Part 15 class A (Emission) EN 61 000-4-8, L5 	
Shock	25 g (IEC 60068-2-27)	
Vibration	2 g (IEC 60068-2-6)	
Physical data		
Weight	1.4 kg (3.1 lb.), incl. 24° lens	
Cameras size, incl. lens (L \times W \times H)	$242\times80\times105$ mm (9.5 \times 3.1 \times 4.1 in.), incl. 24° lens	
Housing material	Aluminum	
Shipping information		
Packaging, type	Cardboard box	
List of contents	 Infrared camera Ethernet cable FLIR ThermoVision SDK (license only) FLIR VideoReport CD-ROM Lens cap Power supply Printed documentation USB cable Video cable 	
Packaging, weight		
Packaging, size		
EAN-13	7332558008416	
UPC-12	845188008765	
Country of origin	Sweden	

Supplies & accessories:

- T197387; IR lens, 24° with case for GF300, GF309, GF320
- T197388; IR lens, 6° with case for GF300, GF309, GF320, GF346.
- T197385; IR lens, 14.5° with case for GF300, GF309, GF320
- T197692; Battery charger, incl. power supply with multi plugs
- T910814; Power supply, incl. multi plugs
- T198511; Li-Ion Battery pack 7.4V 33Wh
- T911230ACC; Memory card SDHC 4 GB
- 1910423; USB cable Std A <-> Mini-B
- T198509; Cigarette lighter adapter kit, 12 VDC, 1.2 m/3.9 ft.
- T910815ACC; HDMI to HDMI cable 1.5 m
- T910816ACC; HDMI to DVI cable 1.5 m

- T197555; Hard transport case for FLIR GF3xx-Series
- T198585; FLIR VideoReport
- DSW-10000; FLIR IR Camera Player
- T199233; FLIR Atlas SDK for .NET
- T199234; FLIR Atlas SDK for MATLAB
- T198567; ThermoVision[™] System Developers Kit Ver. 2.6
- T198566; ThermoVision™ LabVIEW® Digital Toolkit Ver. 3.3

October 29, 2014 AQ320095

CE Declaration of Conformity

This is to certify that the System listed below have been designed and manufactured to meet the requirements, as applicable, of the following EU-Directives and corresponding harmonising standards. The systems consequently meet the requirements for the CE-mark.

Directives: Directive 2004/108/EC; Electromagnetic Compatibility

Standards:

Emission:	EN 61000-6-4;	Electro magnetic Compatibility Generic standards - Emission
Immunity:	EN 61000-6-2;	Electro magnetic Compatibility; Generic standards - Immunity

System:

FLIR G300a series

FLIR Systems AB Quality Assurance

MD Björn Svensson Director

Detectable gases

The FLIR G300 a camera has been engineered and designed to detect various gases. This table lists the gases that FLIR Systems has tested at various concentrations within the laboratory.

Common name	Molecular formula	Structural formula
1-Pentene	C ₅ H ₁₀	~~~
Benzene	C ₆ H ₆	
Butane	C4H10	
Ethane	C2H6	_
Ethanol	C₂H ₆ O	H H H—C—C—O—H H H H H
Ethylbenzene	C ₈ H ₁₀	

Common name	Molecular formula	Structural formula
Ethylene	C ₂ H ₄	
		H H H
Heptane	C ₇ H ₁₆	~~~~
Hexane	C ₆ H ₁₄	~~~~
Isoprene	C₅H ₈	\searrow
<i>m</i> -Xylene	C ₈ H ₁₀	
Methane	CH ₄	H H H
Methanol	CH4O	н он

Common name	Molecular formula	Structural formula
Methyl ethyl ketone	C ₄ H ₈ O) O
МІВК	C ₆ H ₁₀ O	
Octane	C ₈ H ₁₈	~~~~
Pentane	C ₅ H ₁₂	~~~
Propane	C ₃ H ₈	\sim
Propylene	C ₃ H ₆	\checkmark
Toluene	C ₇ H ₈	

Why do some gases absorb infrared energy?

From a mechanical point of view, molecules in a gas could be compared to weights (the balls in the figures below), connected together via springs. Depending on the number of atoms, their respective size and mass, the elastic constant of the springs, molecules may move in given directions, vibrate along an axis, rotate, twist, stretch, rock, wag, etc.

The simplest gas molecules are single atoms, like helium, neon or krypton. They have no way to vibrate or rotate, so they can only move by translation in one direction at a time.

Figure 17.1 Single atom

The next most complex category of molecules is homonuclear, made of two atoms such as hydrogen (H_2), nitrogen (N_2) and oxygen (O_2). They have the ability to tumble around their axes in addition to translational motion.

Figure 17.2 Two atoms

Then there are complex diatomic molecules, such as carbon dioxide (CO₂), methane (CH₄), sulfur hexafluoride (SF₆), and styrene (C₆H₅CH=CH₂) (these are just a few examples).

Figure 17.3 Carbon dioxide (CO₂), 3 atoms per molecule

This assumption is valid for multi-atomic molecules.

Figure 17.5 Sulfur hexafluoride (SF₆), 7 atoms per molecule

Figure 17.6 Styrene (C₆H₅CH=CH₂), 16 atoms per molecule

Their increased degrees of mechanical freedom allow multiple rotational and vibrational transitions. Because they are built from multiple atoms, they can absorb and emit heat more effectively than simple molecules. Depending on the frequency of the transitions, some of them fall into energy ranges that are located in the infrared region where the infrared camera is sensitive.

Transition type	Frequency	Spectral range
Rotation of heavy molecules	10 ⁹ –10 ¹¹ Hz	Microwaves, above 3 mm/0.118 in.
Rotation of light molecules and vibration of heavy molecules	10 ¹¹ –10 ¹³ Hz	Far infrared, between 30 μm and 3 mm/0.118 in.
Vibration of light molecules. Rotation and vibration of the structure	10 ¹³ –10 ¹⁴ Hz	Infrared, between 3 μm and 30 μm
Electronic transitions	10 ¹⁴ –10 ¹⁶ Hz	UV-visible

In order for a molecule to absorb a photon via a transition from one state to another, the molecule must have a dipole moment capable of briefly oscillating at the same frequency as the incident photon. This quantum mechanical interaction allows the electromagnetic field energy of the photon to be "transferred" or absorbed by the molecule.

FLIR Systems cameras take advantage of the absorbing nature of certain molecules, to visualize them in their native environments.

FLIR Systems focal plane arrays and optical systems are specifically tuned to very narrow spectral ranges, in the order of hundreds of nanometers, and are therefore ultra selective. Only gases absorbent in the infrared region that is delimited by a narrow band pass filter can be detected.

Since the energy from the gases is very weak, all camera components are optimized to emit as little energy as possible. This is the only solution to provide a sufficient signal-to-noise ratio. Hence, the filter itself is maintained at a cryogenic temperature: down to 60 K in the case of the FLIR Systems LW camera that was released in the beginning of 2008.

Below, are the transmittance spectra of two gases:

- Benzene (C₆H₆)—absorbent in the MW region
- Sulfur hexafluoride (SF₆)—absorbent in the LW region.

Figure 17.7 Benzene (C_6H_6). Strong absorption around 3.2/3.3 μm

Figure 17.8 Sulfur hexafluoride (SF₆). Strong absorption around 10.6 μ m

Cleaning the camera

18.1 Camera housing, cables, and other items

18.1.1 Liquids

Use one of these liquids:

- Warm water
- A weak detergent solution

18.1.2 Equipment

A soft cloth

18.1.3 Procedure

Follow this procedure:

- 1. Soak the cloth in the liquid.
- 2. Twist the cloth to remove excess liquid.
- 3. Clean the part with the cloth.

Do not apply solvents or similar liquids to the camera, the cables, or other items. This can cause damage.

18.2 Infrared lens

18.2.1 Liquids

Use one of these liquids:

- A commercial lens cleaning liquid with more than 30% isopropyl alcohol.
- 96% ethyl alcohol (C₂H₅OH).

18.2.2 Equipment

Cotton wool

18.2.3 Procedure

Follow this procedure:

- 1. Soak the cotton wool in the liquid.
- 2. Twist the cotton wool to remove excess liquid.
- 3. Clean the lens one time only and discard the cotton wool.

VI WARNING

Make sure that you read all applicable MSDS (Material Safety Data Sheets) and warning labels on containers before you use a liquid: the liquids can be dangerous.

- Be careful when you clean the infrared lens. The lens has a delicate anti-reflective coating.
- Do not clean the infrared lens too vigorously. This can damage the anti-reflective coating.

About FLIR Systems

FLIR Systems was established in 1978 to pioneer the development of high-performance infrared imaging systems, and is the world leader in the design, manufacture, and marketing of thermal imaging systems for a wide variety of commercial, industrial, and government applications. Today, FLIR Systems embraces five major companies with outstanding achievements in infrared technology since 1958—the Swedish AGEMA Infrared Systems (formerly AGA Infrared Systems), the three United States companies Indigo Systems, FSI, and Inframetrics, and the French company Cedip.

Since 2007, FLIR Systems has acquired several companies with world-leading expertise in sensor technologies:

- Extech Instruments (2007)
- Ifara Tecnologías (2008)
- Salvador Imaging (2009)
- OmniTech Partners (2009)
- Directed Perception (2009)
- Raymarine (2010)
- ICx Technologies (2010)
- TackTick Marine Digital Instruments (2011)
- Aerius Photonics (2011)
- Lorex Technology (2012)
- Traficon (2012)
- MARSS (2013)
- DigitalOptics micro-optics business (2013)
- DVTEL (2015)

Figure 19.1 Patent documents from the early 1960s

FLIR Systems has three manufacturing plants in the United States (Portland, OR, Boston, MA, Santa Barbara, CA) and one in Sweden (Stockholm). Since 2007 there is also a manufacturing plant in Tallinn, Estonia. Direct sales offices in Belgium, Brazil, China, France, Germany, Great Britain, Hong Kong, Italy, Japan, Korea, Sweden, and the USA—together

with a worldwide network of agents and distributors—support our international customer base.

FLIR Systems is at the forefront of innovation in the infrared camera industry. We anticipate market demand by constantly improving our existing cameras and developing new ones. The company has set milestones in product design and development such as the introduction of the first battery-operated portable camera for industrial inspections, and the first uncooled infrared camera, to mention just two innovations.

he **Figure 19.3** 2015: FLIR One, an accessory to iPhone and Android mobile phones. Weight: 90 g (3.2 oz.).

Figure 19.2 1969: Thermovision Model 661. The camera weighed approximately 25 kg (55 lb.), the oscilloscope 20 kg (44 lb.), and the tripod 15 kg (33 lb.). The operator also needed a 220 VAC generator set, and a 10 L (2.6 US gallon) jar with liquid nitrogen. To the left of the oscilloscope the Polaroid attachment (6 kg/13 lb.) can be seen.

FLIR Systems manufactures all vital mechanical and electronic components of the camera systems itself. From detector design and manufacturing, to lenses and system electronics, to final testing and calibration, all production steps are carried out and supervised by our own engineers. The in-depth expertise of these infrared specialists ensures the accuracy and reliability of all vital components that are assembled into your infrared camera.

19.1 More than just an infrared camera

At FLIR Systems we recognize that our job is to go beyond just producing the best infrared camera systems. We are committed to enabling all users of our infrared camera systems to work more productively by providing them with the most powerful camera–software combination. Especially tailored software for predictive maintenance, R & D, and process monitoring is developed in-house. Most software is available in a wide variety of languages.

We support all our infrared cameras with a wide variety of accessories to adapt your equipment to the most demanding infrared applications.

19.2 Sharing our knowledge

Although our cameras are designed to be very user-friendly, there is a lot more to thermography than just knowing how to handle a camera. Therefore, FLIR Systems has founded the Infrared Training Center (ITC), a separate business unit, that provides certified training courses. Attending one of the ITC courses will give you a truly hands-on learning experience. The staff of the ITC are also there to provide you with any application support you may need in putting infrared theory into practice.

19.3 Supporting our customers

FLIR Systems operates a worldwide service network to keep your camera running at all times. If you discover a problem with your camera, local service centers have all the equipment and expertise to solve it within the shortest possible time. Therefore, there is no need to send your camera to the other side of the world or to talk to someone who does not speak your language.

Glossary

absorption (ab- sorption factor)	The amount of radiation absorbed by an object relative to the re- ceived radiation. A number between 0 and 1.
atmosphere	The gases between the object being measured and the camera, nor- mally air.
autoadjust	A function making a camera perform an internal image correction.
autopalette	The IR image is shown with an uneven spread of colors, displaying cold objects as well as hot ones at the same time.
blackbody	Totally non-reflective object. All its radiation is due to its own temperature.
blackbody radiator	An IR radiating equipment with blackbody properties used to calibrate IR cameras.
calculated at- mospheric transmission	A transmission value computed from the temperature, the relative hu- midity of air and the distance to the object.
cavity radiator	A bottle shaped radiator with an absorbing inside, viewed through the bottleneck.
color temperature	The temperature for which the color of a blackbody matches a specific color.
conduction	The process that makes heat diffuse into a material.
continuous adjust	A function that adjusts the image. The function works all the time, continuously adjusting brightness and contrast according to the image content.
convection	Convection is a heat transfer mode where a fluid is brought into mo- tion, either by gravity or another force, thereby transferring heat from one place to another.
dual isotherm	An isotherm with two color bands, instead of one.
emissivity (emissivity factor)	The amount of radiation coming from an object, compared to that of a blackbody. A number between 0 and 1.
emittance	Amount of energy emitted from an object per unit of time and area (W/m^2)
environment	Objects and gases that emit radiation towards the object being measured.
estimated at- mospheric transmission	A transmission value, supplied by a user, replacing a calculated one
external optics	Extra lenses, filters, heat shields etc. that can be put between the camera and the object being measured.
filter	A material transparent only to some of the infrared wavelengths.
FOV	Field of view: The horizontal angle that can be viewed through an IR lens.
FPA	Focal plane array: A type of IR detector.
graybody	An object that emits a fixed fraction of the amount of energy of a blackbody for each wavelength.

IFOV	Instantaneous field of view: A measure of the geometrical resolution of an IR camera.
image correc- tion (internal or external)	A way of compensating for sensitivity differences in various parts of live images and also of stabilizing the camera.
infrared	Non-visible radiation, having a wavelength from about 2–13 $\mu m.$
IR	infrared
isotherm	A function highlighting those parts of an image that fall above, below or between one or more temperature intervals.
isothermal cavity	A bottle-shaped radiator with a uniform temperature viewed through the bottleneck.
Laser LocatIR	An electrically powered light source on the camera that emits laser ra- diation in a thin, concentrated beam to point at certain parts of the ob- ject in front of the camera.
laser pointer	An electrically powered light source on the camera that emits laser ra- diation in a thin, concentrated beam to point at certain parts of the ob- ject in front of the camera.
level	The center value of the temperature scale, usually expressed as a signal value.
manual adjust	A way to adjust the image by manually changing certain parameters.
NETD	Noise equivalent temperature difference. A measure of the image noise level of an IR camera.
noise	Undesired small disturbance in the infrared image
object parameters	A set of values describing the circumstances under which the meas- urement of an object was made, and the object itself (such as emis- sivity, reflected apparent temperature, distance etc.)
object signal	A non-calibrated value related to the amount of radiation received by the camera from the object.
palette	The set of colors used to display an IR image.
pixel	Stands for picture element. One single spot in an image.
radiance	Amount of energy emitted from an object per unit of time, area and angle $(W/m^2/sr)$
radiant power	Amount of energy emitted from an object per unit of time (W)
radiation	The process by which electromagnetic energy, is emitted by an object or a gas.
radiator	A piece of IR radiating equipment.
range	The current overall temperature measurement limitation of an IR cam- era. Cameras can have several ranges. Expressed as two blackbody temperatures that limit the current calibration.
reference temperature	A temperature which the ordinary measured values can be compared with.
reflection	The amount of radiation reflected by an object relative to the received radiation. A number between 0 and 1.

relative humidity	Relative humidity represents the ratio between the current water va- pour mass in the air and the maximum it may contain in saturation conditions.
saturation color	The areas that contain temperatures outside the present level/span settings are colored with the saturation colors. The saturation colors contain an 'overflow' color and an 'underflow' color. There is also a third red saturation color that marks everything saturated by the de- tector indicating that the range should probably be changed.
span	The interval of the temperature scale, usually expressed as a signal value.
spectral (radi- ant) emittance	Amount of energy emitted from an object per unit of time, area and wavelength (W/m²/ μm)
temperature difference, or difference of temperature.	A value which is the result of a subtraction between two temperature values.
temperature range	The current overall temperature measurement limitation of an IR camera. Cameras can have several ranges. Expressed as two blackbody temperatures that limit the current calibration.
temperature scale	The way in which an IR image currently is displayed. Expressed as two temperature values limiting the colors.
thermogram	infrared image
transmission (or transmit- tance) factor	Gases and materials can be more or less transparent. Transmission is the amount of IR radiation passing through them. A number be- tween 0 and 1.
transparent isotherm	An isotherm showing a linear spread of colors, instead of covering the highlighted parts of the image.
visual	Refers to the video mode of a IR camera, as opposed to the normal, thermographic mode. When a camera is in video mode it captures or- dinary video images, while thermographic images are captured when the camera is in IR mode.

Thermographic measurement techniques

21.1 Introduction

An infrared camera measures and images the emitted infrared radiation from an object. The fact that radiation is a function of object surface temperature makes it possible for the camera to calculate and display this temperature.

However, the radiation measured by the camera does not only depend on the temperature of the object but is also a function of the emissivity. Radiation also originates from the surroundings and is reflected in the object. The radiation from the object and the reflected radiation will also be influenced by the absorption of the atmosphere.

To measure temperature accurately, it is therefore necessary to compensate for the effects of a number of different radiation sources. This is done on-line automatically by the camera. The following object parameters must, however, be supplied for the camera:

- The emissivity of the object
- The reflected apparent temperature
- · The distance between the object and the camera
- The relative humidity
- Temperature of the atmosphere

21.2 Emissivity

The most important object parameter to set correctly is the emissivity which, in short, is a measure of how much radiation is emitted from the object, compared to that from a perfect blackbody of the same temperature.

Normally, object materials and surface treatments exhibit emissivity ranging from approximately 0.1 to 0.95. A highly polished (mirror) surface falls below 0.1, while an oxidized or painted surface has a higher emissivity. Oil-based paint, regardless of color in the visible spectrum, has an emissivity over 0.9 in the infrared. Human skin exhibits an emissivity 0.97 to 0.98.

Non-oxidized metals represent an extreme case of perfect opacity and high reflexivity, which does not vary greatly with wavelength. Consequently, the emissivity of metals is low – only increasing with temperature. For non-metals, emissivity tends to be high, and decreases with temperature.

21.2.1 Finding the emissivity of a sample

21.2.1.1 Step 1: Determining reflected apparent temperature

Use one of the following two methods to determine reflected apparent temperature:

21.2.1.1.1 Method 1: Direct method

Follow this procedure:

 Look for possible reflection sources, considering that the incident angle = reflection angle (a = b).

Figure 21.1 1 = Reflection source

2. If the reflection source is a spot source, modify the source by obstructing it using a piece if cardboard.

Figure 21.2 1 = Reflection source

- 3. Measure the radiation intensity (= apparent temperature) from the reflecting source using the following settings:
 - Emissivity: 1.0
 - D_{obj}: 0

You can measure the radiation intensity using one of the following two methods:

Figure 21.3 1 = Reflection source

Figure 21.4 1 = Reflection source

Using a thermocouple to measure reflected apparent temperature is not recommended for two important reasons:

- · A thermocouple does not measure radiation intensity
- A thermocouple requires a very good thermal contact to the surface, usually by gluing and covering the sensor by a thermal isolator.

21.2.1.1.2 Method 2: Reflector method

Follow this procedure:

- 1. Crumble up a large piece of aluminum foil.
- 2. Uncrumble the aluminum foil and attach it to a piece of cardboard of the same size.
- 3. Put the piece of cardboard in front of the object you want to measure. Make sure that the side with aluminum foil points to the camera.
- 4. Set the emissivity to 1.0.

5. Measure the apparent temperature of the aluminum foil and write it down.

Figure 21.5 Measuring the apparent temperature of the aluminum foil.

21.2.1.2 Step 2: Determining the emissivity

Follow this procedure:

- 1. Select a place to put the sample.
- 2. Determine and set reflected apparent temperature according to the previous procedure.
- 3. Put a piece of electrical tape with known high emissivity on the sample.
- 4. Heat the sample at least 20 K above room temperature. Heating must be reasonably even.
- 5. Focus and auto-adjust the camera, and freeze the image.
- 6. Adjust Level and Span for best image brightness and contrast.
- 7. Set emissivity to that of the tape (usually 0.97).
- 8. Measure the temperature of the tape using one of the following measurement functions:
 - *Isotherm* (helps you to determine both the temperature and how evenly you have heated the sample)
 - Spot (simpler)
 - Box Avg (good for surfaces with varying emissivity).
- 9. Write down the temperature.
- 10. Move your measurement function to the sample surface.
- 11. Change the emissivity setting until you read the same temperature as your previous measurement.
- 12. Write down the emissivity.

Note

- Avoid forced convection
- Look for a thermally stable surrounding that will not generate spot reflections
- Use high quality tape that you know is not transparent, and has a high emissivity you are certain of
- This method assumes that the temperature of your tape and the sample surface are the same. If they are not, your emissivity measurement will be wrong.

21.3 Reflected apparent temperature

This parameter is used to compensate for the radiation reflected in the object. If the emissivity is low and the object temperature relatively far from that of the reflected it will be important to set and compensate for the reflected apparent temperature correctly.

21.4 Distance

The distance is the distance between the object and the front lens of the camera. This parameter is used to compensate for the following two facts:

- That radiation from the target is absorbed by the atmosphere between the object and the camera.
- That radiation from the atmosphere itself is detected by the camera.

21.5 Relative humidity

The camera can also compensate for the fact that the transmittance is also dependent on the relative humidity of the atmosphere. To do this set the relative humidity to the correct value. For short distances and normal humidity the relative humidity can normally be left at a default value of 50%.

21.6 Other parameters

In addition, some cameras and analysis programs from FLIR Systems allow you to compensate for the following parameters:

- Atmospheric temperature *i.e.* the temperature of the atmosphere between the camera and the target
- External optics temperature *i.e.* the temperature of any external lenses or windows used in front of the camera
- External optics transmittance *i.e.* the transmission of any external lenses or windows used in front of the camera

History of infrared technology

Before the year 1800, the existence of the infrared portion of the electromagnetic spectrum wasn't even suspected. The original significance of the infrared spectrum, or simply 'the infrared' as it is often called, as a form of heat radiation is perhaps less obvious today than it was at the time of its discovery by Herschel in 1800.

Figure 22.1 Sir William Herschel (1738-1822)

The discovery was made accidentally during the search for a new optical material. Sir William Herschel – Royal Astronomer to King George III of England, and already famous for his discovery of the planet Uranus – was searching for an optical filter material to reduce the brightness of the sun's image in telescopes during solar observations. While testing different samples of colored glass which gave similar reductions in brightness he was intrigued to find that some of the samples passed very little of the sun's heat, while others passed so much heat that he risked eye damage after only a few seconds' observation.

Herschel was soon convinced of the necessity of setting up a systematic experiment, with the objective of finding a single material that would give the desired reduction in brightness as well as the maximum reduction in heat. He began the experiment by actually repeating Newton's prism experiment, but looking for the heating effect rather than the visual distribution of intensity in the spectrum. He first blackened the bulb of a sensitive mercury-inglass thermometer with ink, and with this as his radiation detector he proceeded to test the heating effect of the various colors of the spectrum formed on the top of a table by passing sunlight through a glass prism. Other thermometers, placed outside the sun's rays, served as controls.

As the blackened thermometer was moved slowly along the colors of the spectrum, the temperature readings showed a steady increase from the violet end to the red end. This was not entirely unexpected, since the Italian researcher, Landriani, in a similar experiment in 1777 had observed much the same effect. It was Herschel, however, who was the first to recognize that there must be a point where the heating effect reaches a maximum, and that measurements confined to the visible portion of the spectrum failed to locate this point.

Figure 22.2 Marsilio Landriani (1746–1815)

Moving the thermometer into the dark region beyond the red end of the spectrum, Herschel confirmed that the heating continued to increase. The maximum point, when he found it, lay well beyond the red end – in what is known today as the 'infrared wavelengths'.

When Herschel revealed his discovery, he referred to this new portion of the electromagnetic spectrum as the 'thermometrical spectrum'. The radiation itself he sometimes referred to as 'dark heat', or simply 'the invisible rays'. Ironically, and contrary to popular opinion, it wasn't Herschel who originated the term 'infrared'. The word only began to appear in print around 75 years later, and it is still unclear who should receive credit as the originator.

Herschel's use of glass in the prism of his original experiment led to some early controversies with his contemporaries about the actual existence of the infrared wavelengths. Different investigators, in attempting to confirm his work, used various types of glass indiscriminately, having different transparencies in the infrared. Through his later experiments, Herschel was aware of the limited transparency of glass to the newly-discovered thermal radiation, and he was forced to conclude that optics for the infrared would probably be doomed to the use of reflective elements exclusively (i.e. plane and curved mirrors). Fortunately, this proved to be true only until 1830, when the Italian investigator, Melloni, made his great discovery that naturally occurring rock salt (NaCI) – which was available in large enough natural crystals to be made into lenses and prisms – is remarkably transparent to the infrared. The result was that rock salt became the principal infrared optical material, and remained so for the next hundred years, until the art of synthetic crystal growing was mastered in the 1930's.

Figure 22.3 Macedonio Melloni (1798-1854)

Thermometers, as radiation detectors, remained unchallenged until 1829, the year Nobili invented the thermocouple. (Herschel's own thermometer could be read to $0.2 \,^{\circ}$ C (0.036 $^{\circ}$ F), and later models were able to be read to $0.05 \,^{\circ}$ C (0.09 $^{\circ}$ F)). Then a breakthrough occurred; Melloni connected a number of thermocouples in series to form the first thermopile. The new device was at least 40 times as sensitive as the best thermometer of the day for detecting heat radiation – capable of detecting the heat from a person standing three meters away.

The first so-called 'heat-picture' became possible in 1840, the result of work by Sir John Herschel, son of the discoverer of the infrared and a famous astronomer in his own right. Based upon the differential evaporation of a thin film of oil when exposed to a heat pattern focused upon it, the thermal image could be seen by reflected light where the interference effects of the oil film made the image visible to the eye. Sir John also managed to obtain a primitive record of the thermal image on paper, which he called a 'thermograph'.

Figure 22.4 Samuel P. Langley (1834–1906)

The improvement of infrared-detector sensitivity progressed slowly. Another major breakthrough, made by Langley in 1880, was the invention of the bolometer. This consisted of a thin blackened strip of platinum connected in one arm of a Wheatstone bridge circuit upon which the infrared radiation was focused and to which a sensitive galvanometer responded. This instrument is said to have been able to detect the heat from a cow at a distance of 400 meters.

An English scientist, Sir James Dewar, first introduced the use of liquefied gases as cooling agents (such as liquid nitrogen with a temperature of -196 °C (-320.8 °F)) in low temperature research. In 1892 he invented a unique vacuum insulating container in which it is possible to store liquefied gases for entire days. The common 'thermos bottle', used for storing hot and cold drinks, is based upon his invention.

Between the years 1900 and 1920, the inventors of the world 'discovered' the infrared. Many patents were issued for devices to detect personnel, artillery, aircraft, ships – and even icebergs. The first operating systems, in the modern sense, began to be developed during the 1914–18 war, when both sides had research programs devoted to the military exploitation of the infrared. These programs included experimental systems for enemy intrusion/detection, remote temperature sensing, secure communications, and 'flying torpedo' guidance. An infrared search system tested during this period was able to detect an approaching airplane at a distance of 1.5 km (0.94 miles), or a person more than 300 meters (984 ft.) away.

The most sensitive systems up to this time were all based upon variations of the bolometer idea, but the period between the two wars saw the development of two revolutionary new infrared detectors: the image converter and the photon detector. At first, the image converter received the greatest attention by the military, because it enabled an observer for the first time in history to literally 'see in the dark'. However, the sensitivity of the image converter was limited to the near infrared wavelengths, and the most interesting military targets (i.e. enemy soldiers) had to be illuminated by infrared search beams. Since this involved the risk of giving away the observer's position to a similarly-equipped enemy observer, it is understandable that military interest in the image converter eventually faded.

The tactical military disadvantages of so-called 'active' (i.e. search beam-equipped) thermal imaging systems provided impetus following the 1939–45 war for extensive secret military infrared-research programs into the possibilities of developing 'passive' (no search beam) systems around the extremely sensitive photon detector. During this period, military secrecy regulations completely prevented disclosure of the status of infrared-imaging technology. This secrecy only began to be lifted in the middle of the 1950's, and from that time adequate thermal-imaging devices finally began to be available to civilian science and industry.

Theory of thermography

23.1 Introduction

The subjects of infrared radiation and the related technique of thermography are still new to many who will use an infrared camera. In this section the theory behind thermography will be given.

23.2 The electromagnetic spectrum

The electromagnetic spectrum is divided arbitrarily into a number of wavelength regions, called *bands*, distinguished by the methods used to produce and detect the radiation. There is no fundamental difference between radiation in the different bands of the electromagnetic spectrum. They are all governed by the same laws and the only differences are those due to differences in wavelength.

Figure 23.1 The electromagnetic spectrum. 1: X-ray; 2: UV; 3: Visible; 4: IR; 5: Microwaves; 6: Radiowaves.

Thermography makes use of the infrared spectral band. At the short-wavelength end the boundary lies at the limit of visual perception, in the deep red. At the long-wavelength end it merges with the microwave radio wavelengths, in the millimeter range.

The infrared band is often further subdivided into four smaller bands, the boundaries of which are also arbitrarily chosen. They include: the *near infrared* (0.75–3 μ m), the *middle infrared* (3–6 μ m), the *far infrared* (6–15 μ m) and the *extreme infrared* (15–100 μ m). Although the wavelengths are given in μ m (micrometers), other units are often still used to measure wavelength in this spectral region, *e.g.* nanometer (nm) and Ångström (Å).

The relationships between the different wavelength measurements is:

10 000 Å = 1 000 nm = 1 μ = 1 μ m

23.3 Blackbody radiation

A blackbody is defined as an object which absorbs all radiation that impinges on it at any wavelength. The apparent misnomer *black* relating to an object emitting radiation is explained by Kirchhoff's Law (after *Gustav Robert Kirchhoff*, 1824–1887), which states that a body capable of absorbing all radiation at any wavelength is equally capable in the emission of radiation.

Figure 23.2 Gustav Robert Kirchhoff (1824–1887)

The construction of a blackbody source is, in principle, very simple. The radiation characteristics of an aperture in an isotherm cavity made of an opaque absorbing material represents almost exactly the properties of a blackbody. A practical application of the principle to the construction of a perfect absorber of radiation consists of a box that is light tight except for an aperture in one of the sides. Any radiation which then enters the hole is scattered and absorbed by repeated reflections so only an infinitesimal fraction can possibly escape. The blackness which is obtained at the aperture is nearly equal to a blackbody and almost perfect for all wavelengths.

By providing such an isothermal cavity with a suitable heater it becomes what is termed a *cavity radiator*. An isothermal cavity heated to a uniform temperature generates blackbody radiation, the characteristics of which are determined solely by the temperature of the cavity. Such cavity radiators are commonly used as sources of radiation in temperature reference standards in the laboratory for calibrating thermographic instruments, such as a FLIR Systems camera for example.

If the temperature of blackbody radiation increases to more than 525°C (977°F), the source begins to be visible so that it appears to the eye no longer black. This is the incipient red heat temperature of the radiator, which then becomes orange or yellow as the temperature increases further. In fact, the definition of the so-called *color temperature* of an object is the temperature to which a blackbody would have to be heated to have the same appearance.

Now consider three expressions that describe the radiation emitted from a blackbody.

Figure 23.3 Max Planck (1858-1947)

Max Planck (1858–1947) was able to describe the spectral distribution of the radiation from a blackbody by means of the following formula:

$$W_{\lambda b}=rac{2\pi hc^2}{\lambda^5\left(e^{hc/\lambda kT}-1
ight)}\! imes\!10^{-6}[Watt\,/\,m^2,\mu m]$$

where:

$W_{\lambda b}$	Blackbody spectral radiant emittance at wavelength $\boldsymbol{\lambda}.$
C	Velocity of light = 3×10^8 m/s
h	Planck's constant = 6.6×10^{-34} Joule sec.
k	Boltzmann's constant = 1.4×10^{-23} Joule/K.
Т	Absolute temperature (K) of a blackbody.
λ	Wavelength (μm).

Note The factor 10⁻⁶ is used since spectral emittance in the curves is expressed in Watt/ m^2 , μm .

Planck's formula, when plotted graphically for various temperatures, produces a family of curves. Following any particular Planck curve, the spectral emittance is zero at $\lambda = 0$, then increases rapidly to a maximum at a wavelength λ_{max} and after passing it approaches zero again at very long wavelengths. The higher the temperature, the shorter the wavelength at which maximum occurs.

Figure 23.4 Blackbody spectral radiant emittance according to Planck's law, plotted for various absolute temperatures. 1: Spectral radiant emittance (W/cm² × 10³(µm)); 2: Wavelength (µm)

23.3.2 Wien's displacement law

By differentiating Planck's formula with respect to λ , and finding the maximum, we have:

$$\lambda_{\max} = \frac{2898}{T} [\mu m]$$

This is Wien's formula (after *Wilhelm Wien*, 1864–1928), which expresses mathematically the common observation that colors vary from red to orange or yellow as the temperature of a thermal radiator increases. The wavelength of the color is the same as the wavelength calculated for λ_{max} . A good approximation of the value of λ_{max} for a given blackbody

temperature is obtained by applying the rule-of-thumb 3 000/T μ m. Thus, a very hot star such as Sirius (11 000 K), emitting bluish-white light, radiates with the peak of spectral radiant emittance occurring within the invisible ultraviolet spectrum, at wavelength 0.27 μ m.

Figure 23.5 Wilhelm Wien (1864–1928)

The sun (approx. 6 000 K) emits yellow light, peaking at about 0.5 μ m in the middle of the visible light spectrum.

At room temperature (300 K) the peak of radiant emittance lies at 9.7 μ m, in the far infrared, while at the temperature of liquid nitrogen (77 K) the maximum of the almost insignificant amount of radiant emittance occurs at 38 μ m, in the extreme infrared wavelengths.

Figure 23.6 Planckian curves plotted on semi-log scales from 100 K to 1000 K. The dotted line represents the locus of maximum radiant emittance at each temperature as described by Wien's displacement law. 1: Spectral radiant emittance (W/cm^2 (μm)); 2: Wavelength (μm).

23.3.3 Stefan-Boltzmann's law

By integrating Planck's formula from $\lambda = 0$ to $\lambda = \infty$, we obtain the total radiant emittance (W_b) of a blackbody:

$$W_b = \sigma T^4 \, \left[\text{Watt/m}^2 \right]$$

This is the Stefan-Boltzmann formula (after *Josef Stefan*, 1835–1893, and *Ludwig Boltz-mann*, 1844–1906), which states that the total emissive power of a blackbody is proportional to the fourth power of its absolute temperature. Graphically, W_b represents the area below the Planck curve for a particular temperature. It can be shown that the radiant emittance in the interval $\lambda = 0$ to λ_{max} is only 25% of the total, which represents about the amount of the sun's radiation which lies inside the visible light spectrum.

Figure 23.7 Josef Stefan (1835–1893), and Ludwig Boltzmann (1844–1906)

Using the Stefan-Boltzmann formula to calculate the power radiated by the human body, at a temperature of 300 K and an external surface area of approx. 2 m², we obtain 1 kW. This power loss could not be sustained if it were not for the compensating absorption of radiation from surrounding surfaces, at room temperatures which do not vary too drastically from the temperature of the body – or, of course, the addition of clothing.

23.3.4 Non-blackbody emitters

So far, only blackbody radiators and blackbody radiation have been discussed. However, real objects almost never comply with these laws over an extended wavelength region – although they may approach the blackbody behavior in certain spectral intervals. For example, a certain type of white paint may appear perfectly *white* in the visible light spectrum, but becomes distinctly *gray* at about 2 μ m, and beyond 3 μ m it is almost *black*.

There are three processes which can occur that prevent a real object from acting like a blackbody: a fraction of the incident radiation α may be absorbed, a fraction ρ may be reflected, and a fraction τ may be transmitted. Since all of these factors are more or less wavelength dependent, the subscript λ is used to imply the spectral dependence of their definitions. Thus:

- The spectral absorptance α_λ= the ratio of the spectral radiant power absorbed by an object to that incident upon it.
- The spectral reflectance ρ_λ = the ratio of the spectral radiant power reflected by an object to that incident upon it.
- The spectral transmittance τ_{λ} = the ratio of the spectral radiant power transmitted through an object to that incident upon it.

The sum of these three factors must always add up to the whole at any wavelength, so we have the relation:

 $\alpha_{\lambda} + \rho_{\lambda} + \tau_{\lambda} = 1$

For opaque materials $\tau_{\lambda} = 0$ and the relation simplifies to:

 $\varepsilon_{\scriptscriptstyle\lambda} + \rho_{\scriptscriptstyle\lambda} = 1$

Another factor, called the emissivity, is required to describe the fraction ϵ of the radiant emittance of a blackbody produced by an object at a specific temperature. Thus, we have the definition:

The spectral emissivity ε_{λ} = the ratio of the spectral radiant power from an object to that from a blackbody at the same temperature and wavelength.

Expressed mathematically, this can be written as the ratio of the spectral emittance of the object to that of a blackbody as follows:

$$\varepsilon_{\lambda} = \frac{W_{\lambda o}}{W_{\lambda b}}$$

Generally speaking, there are three types of radiation source, distinguished by the ways in which the spectral emittance of each varies with wavelength.

- A blackbody, for which $\varepsilon_{\lambda} = \varepsilon = 1$
- A graybody, for which $\varepsilon_{\lambda} = \varepsilon = \text{constant less than 1}$
- A selective radiator, for which ε varies with wavelength

According to Kirchhoff's law, for any material the spectral emissivity and spectral absorptance of a body are equal at any specified temperature and wavelength. That is:

 $\varepsilon_{\lambda} = \alpha_{\lambda}$

From this we obtain, for an opaque material (since $\alpha_{\lambda} + \rho_{\lambda} = 1$):

 $\varepsilon_{\lambda} + \rho_{\lambda} = 1$

For highly polished materials ε_{λ} approaches zero, so that for a perfectly reflecting material (*i.e.* a perfect mirror) we have:

$$\rho_{\lambda} = 1$$

For a graybody radiator, the Stefan-Boltzmann formula becomes:

$$W = \varepsilon \sigma T^4 \, [\text{Watt/m}^2]$$

This states that the total emissive power of a graybody is the same as a blackbody at the same temperature reduced in proportion to the value of ε from the graybody.

Figure 23.8 Spectral radiant emittance of three types of radiators. 1: Spectral radiant emittance; 2: Wavelength; 3: Blackbody; 4: Selective radiator; 5: Graybody.

23.4 Infrared semi-transparent materials

Consider now a non-metallic, semi-transparent body – let us say, in the form of a thick flat plate of plastic material. When the plate is heated, radiation generated within its volume must work its way toward the surfaces through the material in which it is partially absorbed. Moreover, when it arrives at the surface, some of it is reflected back into the interior. The back-reflected radiation is again partially absorbed, but some of it arrives at the other surface, through which most of it escapes; part of it is reflected back again. Although the progressive reflections become weaker and weaker they must all be added up when the total emittance of the plate is sought. When the resulting geometrical series is summed, the effective emissivity of a semi-transparent plate is obtained as:

$$\varepsilon_{\lambda} = \frac{(1-\rho_{\lambda})(1-\tau_{\lambda})}{1-\rho_{\lambda}\tau_{\lambda}}$$

When the plate becomes opaque this formula is reduced to the single formula:

$$\varepsilon_{\lambda} = 1 - \rho_{\lambda}$$

This last relation is a particularly convenient one, because it is often easier to measure reflectance than to measure emissivity directly.

The measurement formula

As already mentioned, when viewing an object, the camera receives radiation not only from the object itself. It also collects radiation from the surroundings reflected via the object surface. Both these radiation contributions become attenuated to some extent by the atmosphere in the measurement path. To this comes a third radiation contribution from the atmosphere itself.

This description of the measurement situation, as illustrated in the figure below, is so far a fairly true description of the real conditions. What has been neglected could for instance be sun light scattering in the atmosphere or stray radiation from intense radiation sources outside the field of view. Such disturbances are difficult to quantify, however, in most cases they are fortunately small enough to be neglected. In case they are not negligible, the measurement configuration is likely to be such that the risk for disturbance is obvious, at least to a trained operator. It is then his responsibility to modify the measurement situation to avoid the disturbance e.g. by changing the viewing direction, shielding off intense radiation sources etc.

Accepting the description above, we can use the figure below to derive a formula for the calculation of the object temperature from the calibrated camera output.

Figure 24.1 A schematic representation of the general thermographic measurement situation.1: Surroundings; 2: Object; 3: Atmosphere; 4: Camera

Assume that the received radiation power W from a blackbody source of temperature T_{source} on short distance generates a camera output signal U_{source} that is proportional to the power input (power linear camera). We can then write (Equation 1):

$$U_{source} = CW(T_{source})$$

or, with simplified notation:

$$U_{source} = CW_{source}$$

where C is a constant.

Should the source be a graybody with emittance $\epsilon,$ the received radiation would consequently be $\epsilon W_{\text{source}}.$

We are now ready to write the three collected radiation power terms:

1. Emission from the object = $\epsilon \tau W_{obj}$, where ϵ is the emittance of the object and τ is the transmittance of the atmosphere. The object temperature is T_{obj} .

2. Reflected emission from ambient sources = $(1 - \varepsilon)\tau W_{refl}$, where $(1 - \varepsilon)$ is the reflectance of the object. The ambient sources have the temperature T_{refl} . It has here been assumed that the temperature T_{refl} is the same for all emitting surfaces within the halfsphere seen from a point on the object surface. This is of course sometimes a simplification of the true situation. It is, however, a necessary simplification in order to derive a workable formula, and T_{refl} can – at least theoretically – be given a value that represents an efficient temperature of a complex surrounding.

Note also that we have assumed that the emittance for the surroundings = 1. This is correct in accordance with Kirchhoff's law: All radiation impinging on the surrounding surfaces will eventually be absorbed by the same surfaces. Thus the emittance = 1. (Note though that the latest discussion requires the complete sphere around the object to be considered.)

3. Emission from the atmosphere = $(1 - \tau)\tau W_{atm}$, where $(1 - \tau)$ is the emittance of the atmosphere. The temperature of the atmosphere is T_{atm} .

The total received radiation power can now be written (Equation 2):

$$W_{\rm tot} = \varepsilon \tau W_{\rm obj} + (1-\varepsilon) \tau W_{\rm refl} + (1-\tau) W_{\rm atm}$$

We multiply each term by the constant C of Equation 1 and replace the CW products by the corresponding U according to the same equation, and get (Equation 3):

$$U_{\rm tot} = \varepsilon \tau U_{\rm obj} + (1-\varepsilon) \tau U_{\rm refl} + (1-\tau) U_{\rm atm}$$

Solve Equation 3 for U_{obj} (Equation 4):

$$U_{\textit{obj}} = \frac{1}{\varepsilon\tau} U_{\textit{tot}} - \frac{1-\varepsilon}{\varepsilon} U_{\textit{refl}} - \frac{1-\tau}{\varepsilon\tau} U_{\textit{atm}}$$

This is the general measurement formula used in all the FLIR Systems thermographic equipment. The voltages of the formula are:

Table 24.1 Voltages

U _{obj}	Calculated camera output voltage for a blackbody of temperature $T_{\rm obj}$ i.e. a voltage that can be directly converted into true requested object temperature.
U _{tot}	Measured camera output voltage for the actual case.
U _{refl}	Theoretical camera output voltage for a blackbody of temperature T_{refl} according to the calibration.
U _{atm}	Theoretical camera output voltage for a blackbody of temperature T_{atm} according to the calibration.

The operator has to supply a number of parameter values for the calculation:

- the object emittance ε,
- the relative humidity,
- T_{atm}
- object distance (D_{obi})
- the (effective) temperature of the object surroundings, or the reflected ambient temperature T_{refl}, and
- the temperature of the atmosphere T_{atm}

This task could sometimes be a heavy burden for the operator since there are normally no easy ways to find accurate values of emittance and atmospheric transmittance for the

actual case. The two temperatures are normally less of a problem provided the surroundings do not contain large and intense radiation sources.

A natural question in this connection is: How important is it to know the right values of these parameters? It could though be of interest to get a feeling for this problem already here by looking into some different measurement cases and compare the relative magnitudes of the three radiation terms. This will give indications about when it is important to use correct values of which parameters.

The figures below illustrates the relative magnitudes of the three radiation contributions for three different object temperatures, two emittances, and two spectral ranges: SW and LW. Remaining parameters have the following fixed values:

- $\tau = 0.88$
- T_{refl} = +20°C (+68°F)
- T_{atm} = +20°C (+68°F)

It is obvious that measurement of low object temperatures are more critical than measuring high temperatures since the 'disturbing' radiation sources are relatively much stronger in the first case. Should also the object emittance be low, the situation would be still more difficult.

We have finally to answer a question about the importance of being allowed to use the calibration curve above the highest calibration point, what we call extrapolation. Imagine that we in a certain case measure $U_{tot} = 4.5$ volts. The highest calibration point for the camera was in the order of 4.1 volts, a value unknown to the operator. Thus, even if the object happened to be a blackbody, i.e. $U_{obj} = U_{tot}$, we are actually performing extrapolation of the calibration curve when converting 4.5 volts into temperature.

Let us now assume that the object is not black, it has an emittance of 0.75, and the transmittance is 0.92. We also assume that the two second terms of Equation 4 amount to 0.5 volts together. Computation of U_{obj} by means of Equation 4 then results in $U_{obj} = 4.5 / 0.75 / 0.92 - 0.5 = 6.0$. This is a rather extreme extrapolation, particularly when considering that the video amplifier might limit the output to 5 volts! Note, though, that the application of the calibration curve is a theoretical procedure where no electronic or other limitations exist. We trust that if there had been no signal limitations in the camera, and if it had been calibrated far beyond 5 volts, the resulting curve would have been very much the same as our real curve extrapolated beyond 4.1 volts, provided the calibration algorithm is based on radiation physics, like the FLIR Systems algorithm. Of course there must be a limit to such extrapolations.

Figure 24.2 Relative magnitudes of radiation sources under varying measurement conditions (SW camera). 1: Object temperature; 2: Emittance; Obj: Object radiation; Refl: Reflected radiation; Atm: atmosphere radiation. Fixed parameters: $\tau = 0.88$; T_{refl} = 20°C (+68°F); T_{atm} = 20°C (+68°F).

Figure 24.3 Relative magnitudes of radiation sources under varying measurement conditions (LW camera). 1: Object temperature; 2: Emittance; Obj: Object radiation; Refl: Reflected radiation; Atm: atmosphere radiation. Fixed parameters: $\tau = 0.88$; T_{refl} = 20°C (+68°F); T_{atm} = 20°C (+68°F).

A note on the technical production of this publication

This publication was produced using XML — the eXtensible Markup Language. For more information about XML, please visit http://www.w3.org/XML/

A note on the typeface used in this publication

This publication was typeset using Linotype Helvetica[™] World. Helvetica[™] was designed by Max Miedinger (1910–1980)

LOEF (List Of Effective Files)

T501093.xml; en-US; AB; 35742; 2016-05-20 T505471.xml; en-US; 9229; 2013-10-03 T505013.xml; en-US; 35155; 2016-04-21 T505251.xml; en-US; 15388; 2014-06-18 T505771.xml; ; 33311; 2016-02-11 T505432.xml; en-US; 35155; 2016-04-21 T505470.xml; en-US; 35155; 2016-04-21 T505004.xml; en-US; 35155; 2016-04-21 T505000.xml; en-US; 35155; 2016-04-21 T505000.xml; en-US; 35155; 2016-04-21 T505000.xml; en-US; 35155; 2016-04-21 T505000.xml; en-US; 35155; 2016-04-21 T505001.xml; en-US; 35155; 2016-04-21 T505001.xml; en-US; 32554; 2016-01-20

Website http://www.flir.com

Customer support http://support.flir.com

Copyright

© 2016, FLIR Systems, Inc. All rights reserved worldwide.

Disclaimer Specifications subject to change without further notice. Models and accessories subject to regional market considerations. License procedures may apply. Products described herein may be subject to US Export Regulations. Please refer to exportquestions@flir.com with any questions.

Publ. No.:	T559899
Release:	AB
Commit:	35742
Head:	35742
Language:	en-US
Modified:	2016-05-20
Formatted:	2016-05-20